SPECTRAL SEQUENCES FOR BEGINNERS

mostly following Hutchings

The long exact sequence of ^a pair allows us to compute $H_*(x)$ in terms of $H_*(A)$ and $H_*(x,A)$.

There is a similar LES for a triple. But what about quadruples, etc.? LES's don't work anymore. The answer is spectral sequences

FILTRATIONS

$$
X = CW \cdot \text{complex.}
$$
\nWe filter X by subcomplexes:
$$
X_{0} \subseteq X_{1} \subseteq \cdots
$$
\n
$$
\longrightarrow
$$
 filtration of $C_{*}(X) : F_{p}C_{k}$ \n
$$
\longrightarrow
$$
 associated graded modules:
\n
$$
G_{p}C_{k} = F_{p}C_{k}/F_{p-1}C_{k}
$$
\nexamples 0 X: = i - skeleton.
\n
$$
x_{0} = x_{0} + y_{0} = 0
$$
\n
$$
\therefore
$$
 skeleton of the base.

FILTERED CHAIN COMPLEXES

We have
$$
\partial F_{p}C_{k} \subseteq F_{p}C_{k-1}
$$

\n \rightarrow induced $\partial: G_{p}C_{k} \rightarrow G_{p}C_{k-1}$
\n \rightarrow associated graded chain complex $(G_{p}C_{*},\partial)$
\nand: induced filtration on $H_{*}(X)$:
\n $F_{p}H_{k}(X) = \{ \alpha \in H_{k}(X) : \exists \ x \in F_{p}C_{k} \text{ s.t. } \alpha = \lfloor x \rfloor \}$
\n \rightarrow associated graded pieces $G_{p}H_{k}(X)$.
\nHope. $H_{*}(G_{p}C_{*})$ is easy to compute and it determines $G_{p}H_{*}(C_{*})$, hence $H_{*}(X)$.
\nWe know it works for $\emptyset \subseteq A \subseteq X$.
\nWill compute $H_{*}(X)$ by "successive approximations"

OVERVIEW

A spectral sequence has pages. Each page is ^a ZD grid of vector spaces let's work over a field). There are also differentials, and we get from one page to the next by taking homology

The $E_{p,q}$ with $p+q = k$ correspond to K-chains at the various levels of the filtration

e.g.
$$
E_{p,q}^o = G_p C_{p+q} = F_p C_{p+q}/F_{p-1}C_{p+q}
$$

In favorable cases, each term Ep,q stabilizes with r . For instance if the $E_{p,q}$ are O outside the first quadrant (all the differentials are eventually D). We define $E_{P,q}^{\infty}$ to be this term. The ∞ page is made of these terms

Think about paintball. Each generator for Ep, q gets a paintball. When someone shoots a paintball, both the target and the shooter get eliminated

We will see: $E_{p,q}^{\infty}$ = $G_{p}H_{p+q}(C_{*})$

Sometimes a spectral sequence degenerates, which means all terms stabilize at the same time.

INDEXING (AN ASIDE)

The indexing probably seems weird. Also, the way the arrows turn might seem mysterious. If we instead choose the obvious indexing:

 $E_{p,q}^{\circ}$ = $G_{p}C_{q}$

then the arrows are more natural:

A downside is that for most natural filtrations the bottom right of the I^{33} quadrant would be O's.

Also, Serre invented spectral sequences for Fibrations. There, $E_{p,q}^2$ = $H_p(B; H_q(F))$, which is nice!

By the way, Serre's result illustrates the general pattern It a theorem starts with There is a spectral sequence. then often what the theorem does is describe the E^2 page.

USING SPECTRAL SEQUENCES

Let's say ^a word about using spectral sequences (yes, before we formally say what they are!)

Often, when using a long exact sequence, the hope is that there are lots of zeros. For instance if every third term is O , the remaining maps are isomorphisms.

It's the same with spectral sequences Here's an example. We said that in Serre's spectral sequence we have $E_{p,q}^2$ = $H_p(B, H_q(F))$. So if B is m-dimensional and F is n-dimensional, the E^2 page lives in the mxn rectangle:

All arrows going in & out of $E_{m,n}$ are O for $r \ge 2$ S o: $\ddot{E}_{m,n}$ = $\ddot{E}_{m,n}$ = $H_{m+n}(E)$

FORMAL DEFINITIONS AND STATEMENTS

Say we have the
$$
X_{\rho}
$$
, $F_{\rho}C_{\alpha}$, $G_{\rho}C_{\alpha}$ as above.

\nWe set $E_{\rho,q}^o = G_{\rho}C_{\rho+q}$

\n $\frac{\partial}{\partial o} : E_{\rho,q}^o \rightarrow E_{\rho,q-1}$ (= usual boundary of)

Then
$$
E_{P,q}
$$
 is obtained by taking homology
\nat $E_{P,q}^{\circ}$, so $E_{P,q} = H_{P+q}(G_P C_*)$
\n $\& \partial_i : E_{P,q} \rightarrow E_{P-1,q}$ is defined as:
\ngiven $\alpha \in E_{P,q}$, represent it by a chain
\n $x \in F_P C_{P+q} \longrightarrow \partial x \in F_P C_{P+q-1}$
\n $\rightarrow \partial_i(\alpha) = [\partial x]$.

In other words ∂_1 is the usual ∂ in the same sense as δ : $\text{H}_n(\chi,A) \longrightarrow \text{H}_{n-1}(A)$ is the usual ∂ .

Exercise:
$$
\partial_i
$$
 is well def. $\& \partial_i^2 = 0$.

Again,
$$
E_{p,q}^2
$$
 obtained by taking homology:
\n $E_{p,q}^2 = \frac{\text{ker}(\partial_i : E_{p,q}^1 \longrightarrow E_{p-1,q}^1)}{\text{im}(\partial_i : E_{p+1,q}^1 \longrightarrow E_{p,q}^1)}$

where really we quotient by the intersection of the denominator by the numerator

 $\{x \in F_pC_{p+q}: \partial x \in F_{p-r}C_{p+q-1}\}$

 $F_{p-1}C_{p+q} + \partial(F_{p+r-1}C_{p+q+1})$

 $In general: E_{p,q} =$

This is an approximation of cycles/boundaries: if ^a chain has boundary but the boundary is far down the filtration, we consider it acycle (for now). Similarly if ^a chain is ^a boundary of ^a chain much higher in the filtration, we consider it to not be a boundary (for now).

Proposition. Let (F_pC_*,∂) be a filtered complex, and define the $E_{p,q}$ as above. Then: d induces ^a well defined map $\partial r: E_{p,q}^r \longrightarrow E_{p-r,q+r-1}^r$ with $\partial_r^2 = 0$. \odot E^{r+1} is the homology of (E^r, ∂_r) . \bigcirc $E_{p,q} = H_{p+q}(G_pC_*)$ (I) If the filtration of C_i is bounded V_i then \forall p.q. if r is sufficiently large then $E_{\rho,q} = G_{\rho}H_{\rho+q}(C_{\ast})$

CARTOON

So the edge 2 lies in X3, but its boundary lies in X2, and one component of the boundary lies in X_{1} .

Zeroth approximation: Take boundaries in $X\rho/X\rho-1$ So ^a chain in Xp is ^a cycle if its boundary lies in Xp-1. In this approximation, the edge labeled I is not a cycle but the others are.

First approximation: 0 the remaining chains, see it they have boundary in X_{p-1}/X_{p-2} , etc

The edges labeled 2 and 3 have boundary in the 1° approximation. The edge labeled 4 has boundary in the 2^{na} approx.

At each Stage we take homology, so at the stage when we discover ^a chain's boundary the boundary gets killed and the chain with boundary gets forgotten since it is not a cycle.

Can think of searching for each chain's boundary with a Stronger & Stronger Hashlight.

These stages are exactly the pages of the spectral sequence

BABY EXAMPLES

Of course we get that $H_o(X;F)$ = F both times. The first spectral sequence gives $H_0(X;F) = \langle v, w \rangle / \langle v-w \rangle$

and the second gives: $H_o(X;F) = \langle v, w \rangle / \langle w \rangle$

TODDLER EXAMPLE

Example 3. $X = \mathbb{R}^2$ with usual cell decomp. into unit squares.
 $X_0 = X^{(0)}$
 $X_1 = X^{(1)}$ $x_i = x_{i-1} \cup \{one square\}$ $i > 2$ $\overline{\mathscr{U}}$ \mathbb{Z} $F^{\circ} = E^{\prime}$ \mathbb{Z} $\begin{array}{c} \square \ \square \\ \square \ \square \end{array}$ \bullet \Box \mathbb{Z} \mathbb{Z}

This filtration is not bounded, so you'll need to think about direct limits (or do a finite grid instead)

 $\mathbf{1}$

THE ONE-AT-A-TIME SPECTRAL SEQUENCE

Here we have ^a new phenomenon we didn't see in the last example. The cell L does have boundary in $F_3C_$, namely es But es has already been eliminated The natural way to handle this is to add U to L , since U is the cell that eliminated ez. This is ok, since the Epq are all quotients. If we do this, we get that E^2 = E^{∞} and that $H_*(T^2)$ is generated by $v, e_1, e_2,$ & $L+U,$ as usual

Approx: **CELUUAR** = **StilGULAR**

\n**Step**: For X a A: complex,
$$
H_*(X) \cong H_*^{cell}(X)
$$

\n**15**: Let $X_i = X^{(i)}$ (filtration by skeletal).

\n $\rightarrow E_{pq}^o = C_{p+q}(X^{(p)})/C_{p+q}(X^{(p-1)})$

\n $\rightarrow E_{pq}^1 = H_{p+q}(X^{(p)}, X^{(p-1)})$ (by defined rel. hom.)

\n**Recall**: $H_{p+q}(X^{(p)}, X^{(p-1)}) \cong \begin{cases} C_p^{cell}(X) & q = o \\ 0 & q \neq o \end{cases}$

\nwhere $C_p^{cell}(X)$ is the free F-module on the p-cells.

\nNow: $\partial_i : H_p(X^{(p)}, X^{(p-1)}) \longrightarrow H_{p-1}(X^{(p)}, X^{(p-1)})$ is the usual ∂ (cf. LES for triple).

\nThis exactly records the during maps of the p-cells to the (p-1)-skeleton.

\n $\Rightarrow E^2$ page is $H_*^{cell}(X)$ in bottom rows, and O elsewhere

\n $\Rightarrow E^{\infty} \in E^2$ (the spec. seq. degenerates on page 2).

\nThe proposition follows.

APPLICATION: KÜNNETH

$$
(C_{*,}\partial)
$$
, $(C_{*}^{\prime},\partial')$ chain complexes over a field
\n $(C \otimes C')_{k} = \bigoplus_{i+j=k} C_{i} \otimes C_{j}$
\nand $\partial(\alpha \otimes \beta) = (\partial \alpha) \otimes \beta + (-1)^{i} \propto \otimes (\partial' \beta)$ $\alpha \in C_{i}, \beta \in C_{j}$

Prop. The natural map

\n
$$
□ H: (C_*) \otimes H_1(C_*) \longrightarrow H_{i+j}(C \otimes C')
$$
\nis an isomorphism.

$$
\begin{aligned}\n\mathbf{Pf} \quad \text{Define} \quad F_p \left(C \otimes C' \right)_k &= \bigoplus_{i \leq p} C_i \otimes C_{k-i} \\
\longrightarrow & E_{p,q} \circ C_p \left(C \otimes C' \right)_{p+q} = C_p \otimes C'_q \\
\downarrow \\
\text{Here} \quad \partial (C_p \otimes C'_p) &= (\partial C_p \otimes C'_p) \otimes (C_p \otimes C'_p)\n\end{aligned}
$$

Have

\n
$$
d(C_{\rho} \otimes C_{q}) \subseteq (d_{\rho} \otimes C_{q}) \oplus (C_{\rho} \otimes d_{q})
$$
\n
$$
\subseteq (C_{\rho-1} \otimes C_{q}) \oplus (C_{\rho} \otimes C_{q-1})
$$
\n
$$
\subseteq (C_{\rho-1} \oplus C_{\rho} \oplus C_{\rho})
$$

So we already see that the spectral sequence will degenerate on page 2. The differential only reaches down one level of the filtration

From above:
$$
\partial_{0} = (-1)^{p} \otimes \partial'
$$

\nWe want $E_{pq} = \frac{\ker \partial_{0}}{im\partial_{0}}$. Note the $(-1)^{p}$ does
\nnot affect the Kernel or the image.
\n \longrightarrow E_{pq}^{1} is the homology of the chain complex
\n \longrightarrow $C_{p} \otimes C_{qn}^{i} \xrightarrow{\partial'} C_{p} \otimes C_{q}^{i} \longrightarrow C_{p} \otimes C_{q-1}^{i} \longrightarrow \cdots$
\nwhich is, by definition: $H_{*}(C_{*}^{i}, C_{p})$.
\nThe universal coefficient theorem for homology :
\n $O \longrightarrow H_{n}(C_{*}^{i}) \otimes C_{p} \longrightarrow H_{n}(C_{*}^{i}, C_{p}) \longrightarrow Tor(H_{n-1}(C_{*}^{i}), C_{p}) \longrightarrow O$
\nBut Tor(A,B) = O if A or B is torsion free
\n $\Longrightarrow H_{*}(C_{*}^{i}, C_{p}) \cong H_{*}(C_{*}^{i}) \otimes C_{p}$
\nSo $E_{pq}^{1} \cong C_{p} \otimes H_{q}(C_{*}^{i})$
\nNext $\partial_{1} = \partial \otimes 1$. Similar as above, E_{pq}^{2} is the
\nhomology of
\n $\longrightarrow C_{p+1} \otimes H_{q}(C_{*}^{i}) \longrightarrow C_{p} \otimes H_{q}(C_{*}^{i}) \longrightarrow C_{p-1} \otimes H_{q}(C_{*}^{i}) \longrightarrow \cdots$

We are working over a field. So the
$$
H_q(C_*)
$$
 are
\ntorsion free
\n \rightarrow can apply UCT as above
\n \rightarrow $E_{pq}^2 = H_p(C_* \otimes H_q(C_*^{\prime})) = H_p(C_*) \otimes H_q(C_*^{\prime})$

Each elt of Epg is represented by
$$
\alpha \otimes \beta
$$
 where
\n α is a cycle in C_p α β is a cycle in C_q⁰.
\n $\Rightarrow \alpha \otimes \beta$ is a cycle in C_q $\odot \acute{\ast}$.
\n \Rightarrow all higher differentials vanish, ie. $E^2 = E^{\infty}$.

The proposition follows

$$
\mathscr{W}_{\ell}
$$

For the Künneth formula, you also want to know that $H_*(\chi xY)$ = $H_*(C_*(x) \otimes C_*(Y))$, but this is straightforward with simplicial homology.

FIBER BUNDLES

Next goal: Leray-Serre spectral sequence for fiber bundles. A fiberbundle is ^a space that locally looks like ^a product (perhaps not globally).

First examples: cylinder, Möbius band are [0,1]-bundles over S^1 .

Definition. B = connected space, $b_e \in B$ base point A continuous map $\pi: E \rightarrow B$ is a fiber bundle with fiber F ⁱ f $V \times \epsilon B$ 3 open nbd U & V u as tollows $\pi^{-1}(u) \xrightarrow{\Psi u} Ux F$ $\begin{array}{c|c} \hline \text{m} & \text{m} \end{array}$ fiber total $Write: F \rightarrow E$ space l B base

EXAMPLES

0. Trivial bundle E = Fx B. 1. Covering spaces. F= discrete set. 2. Cylinder & Mobius band. $F = I, B = S¹$ 3. Torus & Klein bottle $F=S^1, B=S^1$ 4. Vector bundles, e.g. tangent bundle 5. Sphere bundles, e.g. unit tangent bundle. Hopf fibration $\rightarrow \pi_3(S^2) \neq O$. 6. Mapping tones $B = S^1$. 7. Lie groups. $G = Lie$ group, $H = compact$ subgroup $H \rightarrow G$ \downarrow G/H In fact this is a principal H -bundle: H acts in a fiberwise way on $E = G$. 8. More Lie groups. E = smooth manifold. G compact Lie gp GCF freely, smoothly $\rightarrow E \rightarrow E/G$

Basic problems: classify bundles, understand sections Hairy ball theorem is ^a section problem

UNITARY GROUPS

Inner product on
$$
C^n
$$
: $\langle u,v \rangle = \sum u_i \overline{v_i}$

\nU(n) = { $M \in GL_nC$: M preserves $\langle v, v \rangle$ }

\nSupn) = { $M \in U(n)$: det(M)=1}

\nProp. We have a fiber bundle $SU(n-1) \rightarrow SU(n)$

\nProof #1: $SU(n-1)$ compact subgp of Lie g, $SU(n)$

\nSo suffices to show $SU(n)/SU(n-1) \cong S^{2n-1}$

\nSU(n) acts transitively on unit sphere in C^n , namely, S^{2n-1} . Stabilizer of a point is $U(n-1)$, e.g. stabilizer of e n is

\n $\begin{pmatrix} A & o \\ o & 1 \end{pmatrix}$

\nReef #2: S thereone in $(A \circ A) \rightarrow A \in SU(n-1)$

\nProof #2: S beomorphic projection is conformal

\nO(n) version) So the inverse maps the trivial $SO(n-1)$ -bundle over \mathbb{R}^{n-1} to the trivial $SO(n-1)$ -bundle over S^{n-1} north pole.

\n $\mathbb{R}^{n-1} \times SO(n-1)$

\n(p, frame)

\n $\begin{pmatrix} \overline{v_0}, \overline{r_{\text{amp}}}, \$

For ⁿ 3 SU ^l SUI ² sis Is SUCH 53

Another way to see this:

\n
$$
SU(2) = \left\{ \left(\frac{\alpha}{-\beta} \frac{\beta}{\alpha} \right) : | \alpha |^2 + | \beta |^2 = 1 \right\}
$$
\nThe equation $|\alpha|^2 + |\beta|^2 = 1$ gives unit sphere in C.

\nAlso, $SU(2) = \left\{ \text{unit quaternions} \right\}$

\n
$$
i = \left(\begin{array}{cc} i & o \\ o & -i \end{array} \right) : j = \left(\begin{array}{cc} o & 1 \\ -1 & o \end{array} \right) \quad k = \left(\begin{array}{cc} o & i \\ i & o \end{array} \right)
$$

We will use the Serre spectral sequence to compute $H_{*}(\text{SU}(n))$ for $n=3, 4$. (Note $H_{*}(\text{SO}(n))$ is already computed in Sec. 3D of Hatcher, using an explicit cell decomposition.)

Bart of the point is to show off spectral sequences as a microwave oven - often you can get something useful out with littleeffort or deep knowledge of the inner workings

SERRE SPECTRAL SEQUENCE

Thus. Let
$$
E \rightarrow B
$$
 be a fiber bundle with fiber
\nF. Then there is a spectral sequence E_{pq}^r
\nwith $E_{pq}^2 = H_p(B; \{H_q(E_x)\})$

and converging to:
\n
$$
E_{pq}^{\infty} G_{p} H_{p+q}(E)
$$

\nFor some filtration on $H_{*}(E)$.

Note: The coefficients here are local. Local coefficients are the same as constant coefficients when $\pi_1(B)$ =1.

Local Coefficients.
$$
\pi = \pi_1(x)
$$
, $M = \mathbb{Z}[\pi]$ -module
\n $\tilde{x} = universal cover.$
\nThen $H_*(x; \{M\})$ is the homology of
\n $C_n(\tilde{x}) \otimes_T M$
\nreally this $\mathbb{Z}[\pi]$ but we emphasize the π

For two left modules
$$
A_iB
$$
 over a ring R , $A\otimes_R B$ is
the abelian group gen by {a@b} subject to distributivity
and: a@b = a@rb (ie factor out by Fraction).

APPLICATION TO SU(n)

Let's compute H_{*}(SU(3))
\n
$$
5^3
$$
 3
\n 6^3 8
\n $E^2 = E^\infty$ 0 5
\n $E^2 = E^\infty$ 0 5
\n \Rightarrow H_k(SU(3)) = { \mathbb{Q} K= \mathbb{Q} , 3,5,8
\n \Rightarrow H_k(SU(3)) = { \mathbb{Q} K= \mathbb{Q} , 3,5,8
\n \Rightarrow H_k(SU(3)) = \mathbb{Q} Subenwise.
\n \therefore And H_{*}(Sul(4)) = H_k(S³×S⁵)
\nSul(3) \rightarrow SU(4)
\nS
\nS
\n3
\n \mathbb{Q} \mathbb{Q} \mathbb{Q}
\n3
\n \mathbb{Q} \mathbb{Q} \mathbb{Q}
\n3
\n \mathbb{Q} \mathbb{Q}
\n6
\n \mathbb{Q} \mathbb{Q}
\n7 S?
\n \Rightarrow H_k(SU(4)) = { \mathbb{Q} K= \mathbb{Q} , 3,5,8,10,12,15
\n \Rightarrow H_k(SU(4)) = { \mathbb{Q} otherwise.
\n \Rightarrow H_k(S³×S⁵×S⁷)

Unfortunately for SU(5) there are differentials to consider

AN EXAMPLE WITH NONTRIVIAL COEFFICIENTS Lets compute H_* of $X =$ Klein bottle with Serre: $B = S'$ $F = S'$, coefficients $M = \mathbb{Z}$ or $\mathbb{Z}/2$ F $H_o(B; H_i(F; M))$ $H_i(B; H_i(F; M))$ $H_o(B; H_o(F; M))$ $H_i(B; H_o(F; M))$ E^2 The spectral seq. is degenerate, so it remains to compute the homology gps (and solve the extension problem). Denote generators for $\pi_1(B)$ & $H_1(F;M)$ by b, f. The action $\pi_1(B)$ C $H_k(F)$ is trivial for $k=0$ and given by $b \cdot f = -f$. So bottom row has trivial (not local) coefficients. V_{-1} V_0 V_1 Let's compute $H_*(B; H, (F; M))$ First, $C_o(\widetilde{B}) \otimes H_1(F;M)$ is gen. by $V_i \otimes f$ subject to $V_i \otimes f = bv_i \otimes b \cdot f = v_{i+1} \otimes -f = -v_{i+1} \otimes f$ \rightarrow it is gen by $v_{o} \otimes f$

Similarly, $C_1(\widetilde{B}) \otimes H_1(F;M)$ is gen by $\epsilon_0 \otimes f$

 \rightarrow chain complex

$$
O \longrightarrow C_{1}(\widetilde{B}) \otimes H_{1}(F;M) \longrightarrow C_{0}(\widetilde{B}) \otimes H_{1}(F;M) \longrightarrow O
$$

$$
e_{1} \otimes f \longmapsto (v_{1} - v_{0}) \otimes f
$$

$$
= v_{1} \otimes f - v_{0} \otimes f
$$

$$
= -2v_{0} \otimes f
$$

 \Rightarrow H₁(B; H₁(F; Z)) = 0
H₁(B; H₁(F; Z/2)) = Z/2
H₀(B; H₁(F; Z/2)) = Z/2
H₀(B; H₁(F; Z/2)) = Z $H_o(B; H_1(F; 2/2)) = \mathbb{Z}/2$.

$$
E^{2}\begin{matrix}2/2 & 0 & 2/2\\ 2/2 & 2/2\\ 2/2 & 2/2\end{matrix}
$$

$$
E^{2}\begin{matrix}2/2 & 2/2\\ 2/2 & 2/2\end{matrix}
$$
over 2/2

This agrees with what we know: $H_{k}(X; \mathbb{Z})$ $\sqrt{2}$ \oplus 42 k=1 Hk(X; 42) = $\left\{\frac{2}{2}\right\}$

For $H_1(\chi;\mathbb{Z})$ have: $0 \to \mathbb{Z} \longrightarrow H_1(\chi;\mathbb{Z}) \longrightarrow \mathbb{Z}/2 \longrightarrow \bigcirc$. Need to verify this is the trivial extension.

INSIDE THE SERRE 5.5

Let
$$
B^p \cdot p
$$
-skleton of B.
\n $F_p C_*(E) = \text{Singular chains supported in } \pi^{-1}(B^p)$.
\n $\rightarrow G_p C_*(E) = C_*(\pi^{-1}(B^p), \pi^{-1}(B^{p-1}))$
\n $\rightarrow E_{pq} = H_{p+q}(\pi^{-1}(B^p), \pi^{-1}(B^{p-1}))$
\n $\begin{array}{rcl}\n\text{(an calculate as a direct sum over } p-\text{cells} \\
\pi \cdot D^p \rightarrow B \quad \text{of } H_{p+q} \text{ of pullback bundle:} \\
E_{pq} = \bigoplus_{\pi} H_{pq} (\pi^*E, (\pi^*|s^{p-1})^*E) \\
\downarrow \rightarrow \text{with } H_{p+q}(\pi^*E, \pi^*E) \\
\downarrow \rightarrow \$

We now have E^1 . Serre's theorem follows.

Let
$$
C_*(E)
$$
 be the cubical singular chain complex.
\nFor $C_{P+q}(E) = \text{span of the singular cubes}$
\n $\sigma: \mathbb{F}^{p+q} \to E$ s.t. $\pi \circ \sigma$ is indep
\nof the last q cords.
\nSuch a cube gives a horizontal p -cube σ_h and,
\nby restricting to the center of σ_h , a vertical
\nq-cube σ_v :
\n σ_h
\nWe then mod out by degenerate σ_h , the ones
\nindep of the last coordinate, and obtain
\n $\Phi_o: E_{Pq} = G_P C_{P+q}(E) \longrightarrow \bigoplus_{\substack{\sigma_h: \mathbb{F}^p \to \mathbb{R} \\ \sigma_h: \mathbb{F}^p \to \mathbb{F}^p}} C_q(E_{center(\sigma_h)})$
\nandeg.

The differential do only considers the vertical boundary, i.e. faces obtained by forgetting one of the last q coords:

So if $\overline{\Phi}_{o}(\sigma)$ = $(\overline{\Phi}_{h}, \overline{\Phi}_{v})$ then: $\Phi_0(\partial \tau) = (-1)^{4} (\tau_{h, \partial \tau_{v}})$ ie. Fiberwise boundary.

So
$$
\overline{\Phi}_{0}
$$
 induces a map on homology:
\n $\overline{\Phi}_{1}: E_{pq}^{1} \longrightarrow \bigoplus_{\overline{\Phi}_{h}: \underline{\pi}^{p} \rightarrow B} H_{q}(E_{center(\overline{\sigma}_{h})}) = G(B; \{H_{q}(E)\})$
\nnondegen

Homotopy lifting property for cubes \Rightarrow Φ , has an inverse (given (τ_h, τ_v) , homotope it around to get the original τ).

d is the horizontal boundary Need to use parallel transport to show this agrees with the differential on $C_p(B_j\{H_q(E_x)\})$

I

$$
\implies E_{pq}^{2} = H_{p}(B; \{H_{q}(Ex)\}).
$$

OTHER SPECTRAL SEQUENCES

Lyndon-Hochschild-Serre: Given
$$
1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow I
$$

\nthere is a spectral sequence with
\n $E_{pq}^2 = H_p(Q; \{H_q(K)\}) \Rightarrow H_{pq}(G)$

Cartan-Leray: Given GCX, free and proper

$$
E_{pq}^2 = H_p(G; H_q(x)) \implies H_{pq}(X|G)
$$

Or: GGX cellularly & who rotations, X² *
\n
$$
E_{pq} = \begin{cases} \bigoplus_{\sigma \in X_p} H_q(G_{\sigma}) & p, q \ge 0 \\ 0 & \text{otherwise} \end{cases} \implies H_{p+q}(G)
$$
\n
$$
X_p = \{p-\alpha | \text{is } \}, G_{\sigma} = \text{stabilizer of } \sigma.
$$

... and many more (a spectral sequence for every occasion).